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Hydrodynamics of confined membranes
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We calculate the hydrodynamic interactidiik) (Oseen interaction kerneénd relaxation frequenci(k)
for the fluctuations of a membrane that is harmonically bounded to a permeable or impermeable wall. We show
that due to the confining wall there is an increase in the effective viscosity of the fluid surrounding the
membrane. This has been observed in experiments on confined membranes, such as lamellar phases and the
red-blood cell membrane. Our results allow a quantitative analysis of these experiments, in terms of the
strength of the membrane confining potential and dislocations.
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I. INTRODUCTION We then use this definition to analyze the results of relax-

The dynamic response of confined liquid membranes i€tion experiments of red-blood cell®BC) [S]. We further
important for the understanding of shear flg®2] and mi-  @pply our definition oy, which we calculate for an overall
crorheology[3] experiments on lamellar phases and in thestationary but thermally fluctuating membrane, to the case of
context of biological membrangg,5]. In the former case, sheared lamellar stacks. In these experim¢hts3] we at-
lamellar phases exhibit a rich phase diagram that depends dfibute the anomalous increase in the measured viscosity to
the spatial conformation of defects in response to shear. she advection of confined fluid over and between colliding
quantitative relation between the unusually large measurethembranes which now flow relative to each other rather than
effective viscosities and the detailed structure of the memfluctuate thermally. The membranes in the stack are assumed
branes in the lamellar pha$g,2], has not been achieved so to have the static undulating form allowed by the lamellar
far. Biological membranes in cells are spatially confined byconfinement and the preexisting defects, while their dynam-
the cytoskeleton4], and therefore also exhibit dynamics ics relative to each other is driven by the shear flow. When
which is different from that of a free bilayer. the stack is sheared, these undulations move with respect to

In this paper we first calculate the dynamics of a fluctu-each other and collidéFig. 1), resulting in fluid and mem-
ating, but overall stationary, confined fluid membrai@ brane flows in the normdk) direction. These normal fluid
similar calculation has been carried out bef@ée7]). The  flows around, and due to, the membrane undulations are re-
result presented here, aside from the derivation of the dysponsible for the anomalously large measured viscosity. Our
namics, is the definition of an effective viscosity of the  calculations therefore allow a quantitative analysis of the ex-
membrane-fluid system. This effective ViSCOSity can beperiments on |ame||a[a phases under shefi, 2], other mi-
|arger than that of a free ﬂU|d, due to the confinement of thQ_‘;rorheok)gy measurementg], and ana|ysis of the fluctua-
fluid and the deviation of the membranes from flatness, i.etions of membranes of the red-blood c@RBC) [5]. In the
their normal undulations. The maximal valuegf is given  former case, we can relate the observed “shear thickening”
by the ratio ofd/ ¢, whered is the normal confinement of the and “shear thinning(increase and reduction in the viscosity

membrane, and is the mean distance in the plane of the with increasing shear rate, respectivety the changes in the
membrane, between membrane-wall collisiongor

membrane-membrane collisions in the case of lamellar stack

due to thermal wandering. The expressions we derive for the fluid membrane q
hydrodynamiqOseef interaction of the membrane, through (@

the surrounding fluid, show hydrodynamic screening at long L _I__—C x/: ¥/_ -
wavelengths, due to the wall. We define an effective viscos- / & confinedflow

ity for the flow of the surrounding fluid due to the membrane wall

undulations. The largest amplitude undulations, at the persis-

Vo
tence length of the membrane, require transport of the sur- () /‘\/\ K -./\
rounding fluid and cause the measured viscosity of the sys- k/ ’\

tem to differ from that of the free fluid. We argue that the

maximal value of our effective viscosity, which occurs at this confined flow  golliding membrane
wavelength, gives the measured effective viscosity of undulations induce normal
sheared confined membranes. This definition of effective vis- motion

cosity is the main result of this paper. FIG. 1. An illustration of the confined fluid dynamics around an

(a) overall-stationary but thermally fluctuating membrane near a
wall, compared tab) a sheared stack of membranes with undula-
*Current address: Department of Chemical Physics, The Weiztions that collide. The shear ratesvo/d gives the relative velocity
mann Institute of Science, P.O.B. 26, Rehovot, Israel 76100. vo between the membranes.
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z Region 1:v, ;. v, fluid on both sides of the membrane is the same, and is equal
to the normal velocity of the membrang,=sh/dt. Addition-

Fluid membrane . . .
d ﬁ\_/fN ally, we require that the shear stress is the same on both sides
of the membrane[10]: o,,0)=0,,,(0), where the shear

z1
Region 0: v, , v, stress is defined bj9]
Ol === e e e - - - = - -
dvy dv
Region 2:v,,,v,, \Wall oy, = 77( QZX + &_XZ> (3
—> X The boundary conditions for the fluid at the wall are the

following: for the impermeable case they are no slip, so that
v (d)=v,(d)=0. For the case of a permeable wall we use
Darcy’s law for the permeation of the component of the
fluid velocity, and no-slip boundary condition for the

x-component at the wall
number of defects per membrane. In the latter example, the P

FIG. 2. An illustration of the domain of the solution of the
Navier-Stokes equationd)—(5), [(A1)—(A20)] for the motion of a
membrane bounded to a permeable or impermeable wall.

RBC has a layer of water that is effectively trapped between vAd) =v,,(d) =\ dp(d), (4)
its outer membrane and the cytoskelefdi, giving rise to
the large effective measured viscosity. vk(d) = vy 5(d) =0, (5)

where dp(d) is the pressure difference across the permeable
wall, A\=Lp/ 7, and\ is the permeability of the wa[i8]. The
lengthL, gives the radius of imaginary holes in the perme-

We describe here the model and the results, deferring thable wall, such that the fluid velocity inside the holes
detailed calculations to the Appendix. changes from zero at the inner surface of the hole,td) at

We solve the Navier-Stokes equations for the normal fluctheir centers.
tuations of a membrane that is confined by an impermeable Solving the resulting equatiorj&qgs. (1) and(2)] for the
or a permeable wall6,8] (Fig. 2). The actual bilayer-wall three variables,, v,, andp (see the Appendix we calculate
interactions that keep the membrane at the constant averag®e pressure difference and viscous stress tensor alorg the
separationd, from the wall, are not explicitly described, and direction, in each region and at the membrane. This gives us
are taken into account through a uniform binding harmonican expression for the force acting in theadirection on the
potential. The membrane is assumed to be flat on averagmembrane due to the surrounding fluid flow. The Oseen in-
with small fluctuations of amplitude, at an equilibrium dis-  teraction kernel, A(Jr-r’|), is defined by the relation be-
tanced from the flat wall(Fig. 2). The rest of the space is tween the velocity of the membrane and the force which we
filled with an incompressible viscous fluid, of densityand  just calculated due to the fluid motig&qg. (A16)]
viscosity . The hydrodynamic variables in the region of
fluid trapped between the membrane and the wall have no v :M :_f &r' A(r = r')F,(r' 1) (6)
subscript(Fig. 2), while the hydrodynamic variables in the Mot oo
semi-infinite regions above the membrane and below the
wall have subscripts 1 and 2, respectively.

The Stokes equations of motion for a viscous fluid [&e
(see Fig. 2

1. MODEL

After a Fourier transform and an expansionkinto first
order in the small inertial ternmp/ 7 (A3), we find for an
impermeable wall

1
Ak,

compared withA¢edk,) =1/47k,, which is the Oseen inter-
v, ap  Pv, v, action for a free membrang1-13. In Fig. 3 we plot the
P =t S5ty (1) function A/Aee Which indeed shows the free-membrane
at gz ax ¥ Sl L
behavior in the limitk,—o or d—, and completely
(we assume that the system is uniform and stationary witlscreened interactions in the limk,—0, where we get:
respect to they direction: v,=0), with the additional con- A/Afreead3k)3(/3.

dox__9p, (92vx+ oy Ak = -
P 5t ax o Tz

[72%%(1 - &%+ 2dk, + 2(dk)?)],  (7)

straint of incompressibility To derive the relaxation frequency of the membrane fluc-
tuations, we note that in equilibrium, the force due to the
Ik - ‘9_"2. ) surrounding fluid is balancefll5] by the force due to the
daX Jaz intrinsic bending energy of the membrajis,16
We are interested in small amplitude norn@tdirection dHpend
fluctuations,h, of the membrane from its flat positidm=0 h w(k) :A(kX)(?—hkx’ (8)

(Fig. 2). The fluctuations in the flow field can therefore be
written in terms of the wave vectds,. Finally, the boundary whereH,,.4is the bending energy of the membrane, which is
conditions have to be specified. The normal velocity of thewritten in terms of the small normal displacemént
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0.8

4 FIG. 3. The functionA(ky)/Aedky). Solid
line: impermeable wall[Eq. (7)]; dash: Ly=d;
dash-dotL,=10d; dot: L,=100d [Eq. (12)].
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1 The relaxation frequency is therefore finally given by

=5 f d?r[x(V?h(r))?+ yh(r)?], 9
(k) = [kkg + yJA(Ky). (11)

where « is the intrinsic curvature modulus and is the
strength of a uniform harmonic potential. We neglect heren the limit of short length scale&,— =), we recover the
any surface tension terms, since we deal with an infinite fluidree-membrane beha\,iqpﬂ,(kimn In the limit of long
membrane. We also neglect terms proportional to Gaussigength scales the dynamics are now modified
curvature, which is similar to spontaneous curvature terms., »yd3k2/377, so the response is “stiffer” than that of a free
that are here neglectef$,16). Furthermore, the Gaussian membrane, with the rigid wall providing an effectively stron-
curvature is a topological constant, so that small fluctuationger restoring force due to the transport of the confined water
that do not change the membrane topolegg., no holes  over length scales k{. At intermediate wavelengthg,<q
do not excite this term. <1/d [where qy=(y/k)¥*=1/¢ and ¢ is the persistence

The presence of the harmonic potentidimposes a finite  jength of the membranewe recover the result of Brochard
average amplitude of the membrane thermal fluctuatidns,

at the value of the separation from the wal[16]

& == (h(O)h(0) =~ (10
8\ Ky

The choice of harmonic potential for description of the con-
finement is natural when the physical situation provides a2
“soft” substrate: For the RBC case the harmonic potential isg
natural since the cytoskeleton is made up of soft filaments=>
(spectrin that are linked to form a soft shell on which the
bilayer sits[4]. Similarly for lamellar phasegsee the next
sectiorn), the spacingd is determined by thermal and struc-
tural fluctuations of neighboring membranes. This also pro-
duces a soft restoring force. For the hard wall case this har.
monic approximation is good for small amplitude E _ 4
fluctuations, where large area membrane-wall contacts arc Q=== % 3 4 5 .6
unlikely. In any realistic scenario the membrane is held at a x10
constant spacing from the wall by som&unspecifiegl con-
tacts, which we here do not describe. These contacts, even giG. 4. The functionye(q)/ 7 as a function of the wave vector
when of small area and spargich as in the RBG4,14]),  q, using the elastic and confinement parameters of the RBGee
will likely induce a real harmonic-like potential. Hard-wall- sec. Iv). Solid line: impermeable wall[Eq. (14)]; dash: Ly
membrane collisions are therefore rare, and will be ne=0.1 nm; dot.L,=1 nm; dash-dott.,=10 nm. Vertical dashed I|ne
glected. indicates the perS|stence length of the confined membygne

Wavevector ¢ (m')
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etal.[15]: w— Kk§d3/3n. This last regime is in fact the most not contribute. In other words, it gives the scale of the largest
relevant for most measurements, as we find below. The imthermal modes that are correlated. Longer wavelengths con-
portance of the persistent lengthis in the fact that the form to the confining potential and are not thermally corre-
height-height correlation function saturates at this lengtHated (screening effegt

scale[16], so that the curvature modes of longer lengths do For a permeable wall we get

1 e 21 - M1 + 4L k) + 2dk, + 2(dk)X(1 + 2L K,))

Apernike) = 12
perm( x) 4kx77 1+4kax ( )
[
In the limit of impermeable walL,— 0 we recover the pre- (0= e rkie?ik
vious result(7). Netl K)I 7= T T (1 =%+ 2dk+ 2(dD) (v + kKD’
In Fig. 3 we plot the functiom\ pe;(Ky) / AredKy), Which @ ( (A + k)
shows free-membrane behavior in the linki{—occ, and (14)

screened interactions in the linkit— 0, where we now have
A Ko/ AgredKy) — 4L K,

pern )/ Ared ks P where wee=(kk%) /4kne(K). In other words, the effective
viscosity 7.1{(k) transforms the rate of energy dissipation of
a free membrane to that of a confined membrane. A similar
expression follows for the case of a permeable wall, using
In the previous section, we calculated the effects of CO”%ZEJESSﬂtr:fSEg\(A}?i;n?ieaj 0i(7) in Egs.(11) and(14). The
finement on the membrane dynamics. We saw that confine- - 9. 2. . .

In the limit of long length scalegk— 0), this expression

ment of the fluid flow around the membrane results in sig- . . ;
9 Eq. (14) is linear in the wave vector: 7.4(k)/ 7

ificant modification of the relaxation f 7). W
nificant modification of the relaxation frequeneyl). We - ='o )\ s Eig ) Specifically, in this limit, the con-

begin with deriving a working definition of the effective vis- . : .
cosity of the confined membrane, and then apply this to varifined effective viscosity is much smaller than that of a free

ous physical realizations of confined membranes in the nexflémbrane, due to the faster oscillation frequeney

lll. EFFECTIVE VISCOSITY

section. = yd°k?/35> kk3/47. The confinement forces the mem-
First, we calculate the rate of dissipation of energy due td’r@ne to adopt a nearly flat, lamellar nature at long wave-
membrane fluctuations of wave vector lengths, where no normét-direction) motion persists. This

is the “lubrication” approximation regime for the flow of
thin, flat films [16]. In the opposite limit of short length
] < 9 hk> scales, we recover the free viscosity of the surrounding fluid
E=(f— ) =(-hJxkk*+ yloh) = o kgT, (13) and 7q¢#(k)/ 7— 1 (Fig. 4). Our definition provides a natural
Jt measure of the departure of the membrane from a flat state,
as one can see by noting that in the likit: 0 the membrane
) is flat due to the confinement, while in the linkit— o, the
where for convenience we use the notatigrk, the force  emprane is flat due to its own bending stiffness. Indeed, in
f=Hpend dhi as in(8), ‘?“d<hk>:kBT/[Kk4+ Y] [16]. We use  these limitsy.(K)/ 7 is either unity or small. It is only in the
t_he_equal time cor‘zrelatlor’r@(t)hk(t), so we can use the equi- jntermediate regime, as we'll see later, thag(k)/ 7 can
librium value of(hj). We see that the rate of energy dissipa- attain large values, signaling a strong deviation from flatness.
tion is inversely proportional to the bare fluid viscosity, since  Note that the above definition afes(k)/ 7 [Eq. (14)] is
w>1/7 [see Egs(7) and(1D)]. The result of Eq(13), wx  independent of the temperature, which is the driving force
*1/7, is a general one for thermal floW&7]. For the spe-  for the thermal fluctuations. The reason for this is that both
cific case of fluctuating membrane, we have a fixed amplizonfined and free membranes are driven by the same thermal
tude of thermal fluctuations-d by Eq.(10), as is the energy power. The fluid flow and amount of energy dissipated, at
dissipated per membrane ﬂuctuati%T), while the rate of each wave Vectok’ is determined by the amp”tude of the
fluctuations is slowed down by the viscosity, thereby reducluctuations, which is clearly different for the free and con-
ing vy, and with it E. fined casd16]. As seen in Fig. 4, as the permeation increases
It is convenient to express the modified dynamics of a(increasingL) the effective viscosity approaches that of un-
confined membrane, through the following definition of anconfined membrane, that ige(k)/ 7— 1. Only at long
effective viscosityze;. We define this effective viscosity by wavelengths, where the component of the motion is sup-
comparing the rate of energy dissipation EtB) in confined pressed, does the confinement still affect the membrane dy-
and unconfined membranes, i.e., the ratio of the frequencigzamics.
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The confined membrane has maximal thermal fluctuations — x \¥? dr\®
at the persistence length=1/q,. At these intermediate 778ff/77:3\8(ﬁ> (H) : (18)
wavelengthsqy<q<1/d, where w— xk®d®/3%, we get 5
7er(K)/ 7— 3/4(dK)3, which in general can be larger than which is ~15-50Qd/d)® for typical lipid bilayers(where
unity. This means that at these wavelengths the response ef~1—-1KgT). If the membranes are indeed confined to have
the confined membrane is significantly slower than that ofundulations whose amplitude does not exceed the distnce
the free membrane; this implies a larger effective viscosity ofas for the rigid wall we presented above, then we hdye
the surrounding medium. Indeed, at the characteristic waved. In general, the confinement of the membrane fluctuation
vector , the viscosity ratio of Eq(14) has its peak value amplitude can be constrained by a stronger harmonic poten-

(Fig. 4 tial y, so that the membrane shows fluctuations whose am-
plitudes are less thad (dy<d). This results in a lower ef-
= - e?d% (15) fective viscosity, as seen in E¢L8). Alternatively, a weaker
et (2 2 + 2629% — 4dqp — 4(dqp)?)” confinement, withd;>d, can also occur, as we discuss be-
low.
We are going to use this maximal viscosifys/ 7 (15) as the Our definition of the effective viscosity of membrane

measured effective viscosity of sheared confined membranéfictuations is related to the measured viscosity in sheared
when we analyze experimental data in the next section. Thiamellar phases as follows: If the membranes were perfectly
motivation for this definition is as follows: At the wave vec- flat, the measured viscosity of the sheared stack would be
tor, go, we compare our definition ofje(k)/ 7 [Eq. (14)]  that of the free fluidyes/ 7=1. However, the membranes in
arising from Eq(13), and the expressions for the dissipationthermal equilibrium are not flat; they have an undulating
rate in a sheared fluifB] form constrained by the lamellar confinement and preexist-
ing defects. When the stack is sheared, these undulations
E= EJ' (f?_v>2_ LG (1 Move with respect to each other and colligiég. 1), result-
T2 az) ~ 2d ing in fluid and membrane flows in the norm(@) direction.
These normal fluid flows around, and due to, the membrane
whereL is the lateral size of the slab of sheared flow, and theundulations are responsible for the anomalously large mea-
shear rate across the intermembrane spacing of vddth  sured viscosity[1-3] (Fig. 1) in lamellar stacks of mem-
given by y=v,/d. The local average velocity due to thermal brane, typically of the ordemes/ 7~ 10°—1(F. The addi-
fluctuation is estimated by,=dw, and the lateral size of tional energy dissipation due to the collision-induced
the slab of flow at this wave vector s~ ¢, which we sub-  membrane oscillations normal to the flow, in the confinement

stitute in Eq.(16) of the neighboring membranes, therefore increases the ob-
) 20 — served viscosity. When the sheared membranes collide and
= et O A merr ., VkgT KK are pushed sidewaysee also Fig. Jl the resulting local flow
2d 16V2° (kY)Y 45 field is similar to the confined normal fluctuations we calcu-

lated in the previous section. Our calculation predicts the rate
of dissipation that such an undulation produces in @8),
albeit for an overall stationaryi.e., not flowing and un-
sheared membrane.

VilksT
~ wkgT, 1
1602 ke (17)

=~ wkgT(ké)?

where we used?=kgT/8Vky [Eq. (10)] and (k&)3=1 for k
=qo, and Vk/kgT/16y2~1/8. Beginning with the standard
definition of shear flow, Eq(16), we roughly recover the
result of Eq.(13) for the thermally fluctuating membrane.
The main point is that the equilibrium amplitude of thermal  An important biological example where the confinement
fluctuationsd? is proportional tok, T and determines the en- of the liquid membrane affects its dynamics is in the red-
ergy dissipated per mode The effective viscosity, defined blood cell (RBC) [4]. In this composite lamellar structure,
in EqQ. (14), is thus consistenfup to an order of magnitugle there is a two-dimensional cytoskeleton network that is at-
with the usual “shear flow” definition of Eq.16), for the tached to and therefore confines the thermal fluctuations of
maximal value of the viscosity at wavelengths of the order ofthe outer lipid membrane. We have previously sh¢#jrthat
the persistence length. We therefore identify the measurethe cytoskeleton network acts like a rigid shell at a constant
effective viscosities, with the maximal calculated effectiveaverage separatiod, from the liquid membrane. At the fre-
viscosity of a membrane fluctuation at the wave veqgidias  quencies of the thermal fluctuations, this shell turns out to be
in Eq. (15)], where the deviation from flatnesamplitude of  impermeable[4,1§. In addition to the confinement of the
fluctuationg is largest. thermal fluctuation spectrum, the rigid shell also increases
In the limit of weak harmonic confinemerdg,<1, the the effective viscosity of the water layer that is trapped be-
maximal effective viscosity of Eq15) diverges asnesi/ 7 tween the cytoskeleton and the bilayer, by constraining its
—3/8(dgy)®. We can rewrite this expression in terms of the flow.

IV. PHYSICAL REALIZATIONS OF CONFINED
MEMBRANES

amplitude of thermal fluctuations of the membrard, For this case of the RBC we have the following typical
which is given by the harmonic confinememt[Eq. (10)]  values:d~30 nm andy~5x 10’ J/ntf [4], which, accord-
[16], so that in general we find ing to Eq.(14), gives a maximum effective viscosit{8) of
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@ lamellar phase at low shear rafds-3] [Fig. 5b)]. The mea-
sured effective viscosity in these systems is typically of the
PN _/ order 7e¢/ 7~ 10°. Values of this order of magnitude are
_d\I;\ \__/ —_/ A predicted by our theory, if the membranes are allowed to
' \ / \ //% have thermal fluctuations with an amplitude ayf/d~2-3
_E / (depending on the ratie/kgT) in Eq. (18), due to the strong

N nonlinear dependence af./ » on the ratiod;/d. We there-
fore treat the dynamics of a lamellar phase with defects as a
(b) lamellar phase with an effectively smaller static confinement
v, that results in a value ofl(T)/d>1. By making this
T————  'Defect-free'stack choice we assume that the fluid flow over the membrane
undulations is still confined within a layer of thicknebgthe
average intermembrane separafioith respect to the mem-
1000 =& — Onian. brane, so that our calculation is still valitig. 5. The large
=& — Onion-phase effective viscosity is therefore attributed to the slow fluid
= flow through this thin layer, while it is periodically blocked
by the large membrane undulations, which now excded
This is a very rough description of the rather complicated

Shear rate (sec™)

=——=————  Lamellar phase with defects dynamics of the entangled membranes, though it is useful in
0l = allowing us to make predictions concerning the density of

defects and the shear-rate dependence of the effective viscos-
ity. Since the fluid is mostly confined to a layer of thickness

nite membrane segmerits with edge dislocations every distarice d around the membrane, except at the defect sites them-

(b) A schematic phase diagram of lamellar membranes as afunctioﬁe,lves’ thi.s may be a reasonable starting point to descr”?e
of shear rate, as observed in experimdatg]. this complicated system. Our treatment supposes that the vis-

cosity is dominated by the solvent-bilayer flow, and not by

netsl 7~ 70 (Fig. 4). This value is in close agreement with movement(“creep”) of the defects inside the membranes
the value=50-100 deduced from the measured relaxatior{20]. The transition from lamellar to multilayered vesicles
times of a deformed RB(5]. In these experiments, the cy- (MLV) [1] is not described by our model, which allows for
toplasm flows along the cytoskeleton mesh, as the deformeah analysis of the measured viscosity at each geometry sepa-
RBC relaxes back to its undeformed structure. Thus, an alately.
most impermeable cytoskeletal shell, separated at a fixed dis- If the membranes meander through the defects in the
tance from the bilayef4], results in the significantly larger stack in a random walkFig. 5), then the ratiad/d is given
effective viscosity required to fit these dynamical experi-by yL/I, whereL is the average size of a membrane segment,
ments. Another biological example of a flowing membraneand| is the average distance between defects along the mem-
confined by a cytoskeleton is the extraction of tether frombrane segment, so thag=I/L is the dimensionless density
neuronal growth congd 9]. In this system the water behaves of defects. In experiment2,3], it seems that at low shear
as if it is trapped in a thin laygi~1 nm) between the mem- rates the lamellar phag€&ig. 5b)] has membrane segments
brane and the underlying actin mesh, resulting in an extraotef average lengti. ~10d. The measured effective viscosity
dinarily large value of the effective viscosity. of 7.5t/ 7~ 10° therefore suggests that at low shear rates the

For an infinite stack of membranes in an lamellar  density of defects is maximal, with~d, so thatd,/d
phase(Fig. 5), the confinement of each bilayer is not by a =L/l ~ 3. As the shear rate increases, the membranes in the
rigid wall, but due to the steric repulsion of the neighboringstack become more ordered and the dislocations are re-
membranegexcept for the outer ones that are confined bymoved, until a defect-free lamellar phgde-3] forms at high
the rigid walls of the channg[1]. The bulk modulus of this shear rategFig. 5b)]. As the density of defects decreases, so
phase is given by Ref16]: B=36(kgT)?/ m?«d*, which cor-  does the effective viscosityy.i/ 7 n > [using Eq.(18)].
responds to the parametgiin Eq. (18). The resulting maxi- We can further compare our analysis above with the re-
mal effective viscositytaking k ~10kgT) is 7./ 7~ 3. This  sults of experiments on the time-dependent behavior of a
number is typical of the measured viscosity of a defect-fredyotropic lamellar phase under shear fl¢g22,23. In these
lamellar phasg1-3,21]. By “defect-free” we mean a lamel- experimentg23] it was found that the phase of onions can
lar phase where dislocations and multilayered vesicles arescillate between a disordered and ordgtedngula) pack-
absent. ing state, with a corresponding change in the sheanfate

We suggest that the effective viscosity of lamellar phasegonstant stregsThese periodic rearrangements of the onions
with defects can be treated as follows: Defects in the lamellaare limited by the rate at which the trapped water confined
stacking are typically dislocation lines that allow membranesetween the onions can flow ofiig. 6). We treat the onions
to “penetrate” through their neighbois,12,2Q (Fig. 5). The  as rigid bodies which only change their packing from or-
layer of confined water around each membrane is stdl  dered to disordered, which is reasonable since the onions are
thick, while the effective static confinement paramefeis  quite small and compact, as described in Rgf&,23. From
now smaller, allowing for the membrane to have undulationsimple geometry, the shape of the trapped water between the
with an average amplitude(T)>d. This is typical of a onions has an average widthaf 0.155R. Using our results

FIG. 5. (a) A schematic example of a lamellar phase of mem-
branes with average separatidnshowing defects that produce fi-
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FIG. 7. Dynamics of a vesiclesolid line) drawn into a micropi-
FIG. 6. Time-dependent dynamics of onion phg28. The os-  pette (thick rectanglg in the experiments of Refi26]. The free
cillations are between the ordered-trianguleft) and disordered  fluctuations of wavelength-R, have the largest amplitudeashed
(right) packing of the onions. These are limited by the flow of theline), and are confined into the micropipette of radiutmiting the
water into and out of the confined spaces between the onions, whefynamics.
these roll over each other.

so far, we write the frequency of these oscillations aas is the vesicle radius and=22GgT [26]. These sIowegt
=kl 47, where g~1/R~0.5um™, x~kgT, and modes have the longest wavelengRy) and largest ampli-
merl m~ (RId)3=250. We therefore recover the measurediude, so that they present the largest obstacle when the
[23] frequency of~1000 s. In this analysis we treat fluid VESICIE iS being drawn into the micropipettef radius r

flows on the length scale of the raditsor smaller, as es- ~5 pm; Fig. 7). From our discussion so far, the effective

sentially those we calculated for flat confined membranesViSCOSity these fluctuations encounter inside the micropipette

; g 3 .
This is a reasonable approximation for the dynamics of thdS €nhanced by a factor L5): ~(R,/r)”~100 (taking go
whole onions. ~1/Ry). Note that the confinement inside a cylindrical mi-

Furthermore, since we predict that the effective viscositySTOPIPette is higher than in the slab geometry we calculated
will not depend on the size of the onions, the frequencyabove' This setup can be used to systematically check our

should depend on the radius through:R-3. This relation predicted relation between the effective viscosjty;/ 7 [Eq.

naturally explains the measured dependence of the frequen&y®]: and the ratio~(Ro/r).

on the temperaturg@=ig. 6 of Ref.[23]), as it follows from

the observed temperature dependence of the rgdiuthe

relevant range of shear rates; see Fig. 5 of R2%]); the V. CONCLUSIONS
radius is found to increase by a factor 6f1.5 when the
temperature increases from 23.5°C to 27.8°C. This correg,
sponds to a decrease of the frequency by a factor B3
over this range of temperatures, in good agreement with th
observed datg23]. Similar slow dynamics appears in a
sheared sponge pha$24], where periodic transitions be-
tween large and small multilamellar droplets occur.

In this paper we have calculated the hydrodynamics of
ctuations in confined fluid membranes. We find that the
effects of confinement dramatically modify the dynamics of
fhe membranes. We introduce a new definition for the effec-
tive viscosity of a confined membrane, which we relate to the
observed effective viscosities in various physical realizations

R i : i dsorbed linid b of confined membranes such as lamellar phases and in red-
ecent experiments on adsorbed lipid membraf® 1,4 coll These results can also help in the analysis of

show the dynamic implications of confinement on membrang, - i o phase transitions occurring in lamellar mem-

fluctuations. In these experiments the membranes are Iayer% anes under shear flow. In particular, they allow one to

and form adhesion patches, with trapped *blisters” of wateln ke a quantitative connection between the geometric con-

in between. Th? adhesion of the membranes confines thf‘?)rmation of the membranes, their defects, and the measured
thermal fluctuations to patches of lateral slze- 0.44 um, effective viscosity

with a root-mean-square fluctuation amplitude af
~6.5 nm. When the relaxation rate of these fluctuations was
measured, it was found to be two orders of magnitude slower
than expected for a free membrane. If we use the amplitude
d as the typical thickness of the water layer in which the This work was supported by an ISF grant and by the BSF
membrane is free to fluctuate in our expression for the imGrant Number 183-2002. The authors are grateful to the do-
permeable wal[Eq. (11)], we find a time scale of-1 s for  nors of the Petroleum Research Fund administered by the
the dynamics at the measured wave veder2.3 um™.  American Chemical Society and the Schmidt Minerva Center
This is in excellent agreement with the measured value ofor their support. N.G.’s research is being supported by the
~0.9s. Koshland Postdoctoral Fellowship.

Another example of recent experiments where enhanced
effective viscosity has been observed is the rheological study
of giant vesicles by a micropipetf26@]. In these experiments APPENDIX: SOLUTION OF STOKES EQUATIONS
the shear-induced reduction in the amplitude of thermal fluc-
tuations was measured by the suction of the vesicle into a The equations of motion for the fluid a(&) and(2). We
micropipette. The critical time scale of the vesicle fluctua-next make a standard Fourier transform, by takingxtue-
tions that are affecte@liminished by the shear was found to pendence to be given by elxik,x). The incompressibility
be 7,~ 140 s, which is~180 times larger than the slowest condition[Eq.(2)] is thereforev,=(-i/k,) dv,/ dz. From this
vesicle membrane mode; = 7R3/ k, whereRy=20 um  set of equations the pressure is given by
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1| ,d0v, & k
p:——z[ki—vz——vz]. (A1) 2A+B(1+—Z>
Kl “dz 92 Ky
B,= T +D. (A7)
Substituting for thez- andt dependence an exponential form 1--=
exp(zk,z— wt), we have an equation fdk, Ky

K2 Inserting these into the last boundary condition(&6), we
Sl-po+ -] ==po+ 7E—ID,  (AD  gor Y 80)
X

which has the solutions k
, B:—AEXD A;=A+C, B,=B+D. (A8)
Z
k2= g (A3) . .
ki_ pwl 7. The equations we need to solve are for the three indepen-
dent parameteré, C,D, using the following boundary con-
From now on we shall usk, to mean the second solution. ditions at the wallat z=d)

The fluid velocity fields are therefore given by

v, = € UK (Ae? + BekZ + Cd® + D), vAd) =0, (A9)
v,1 = €A + B, vy(d) =0. (A10)
Uy2= e X (AT + Be ), (A4)  Combining these two equations with the condition
with the corresponding components given by the incom- 00) =v,1(0) = v, (ALD)

pressibility condition

wherev,=dh/dt is the membrane velocity in tredirection,

_ T ik —k —k
Ux= k_xe K= kAT - kBEF + kCe + k,Del), we have a complete set of equations to solve
otk k 1- K 1 1
Ux1 = € TN A + kB, Eq(A11) K, A
X
Eq(A9) O | g _ k_xe—dkz o o || C
S ™ . Eq(A10) K, D
Uy 2= k—xe (= KA — k Bg 7). (A5) k(e - et ket ket
Um
1. Impermeable wall = 0| (A12)
For simplicity let us first consider the impermeable wall 0
case, i.e., the region 2 is removélig. 2). The boundary Using MATHEMATICA [27] we solve forA,C,D
conditions at the membrane are
_ Ky 1
vA0) = vZ,l(O)a 1-=2 1 1
A k, Um
UX(O) = vx|l(0)! C = e_dkx - &e_dkz edkx edkz 0
D k, 0
7140) = 73,4(0), (A6) ke e el kel
(A13)

where the shear stress is defined in B).

First, using the first two boundary conditions (@), we o i )
Substituting the parametess C,D in the expression for the

t
ge pressurgAl), we find at the membrang=0) for the two
k, k, regions
-Al1+—= - ZBk—
A= X X +C, k2
1ok p<0)=kX<A—c><—§—1)
K, Ky
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g 2. Permeable wall
0)=-k(A+O)| 5-1 .
P1(0) K ) K2 We now consider the case of a permeable wall. The

x boundary conditions at the membrane remain unchanged,

K2 ) - . . -
0 0) = p.(0) - p(0 2 _q). while at the wall the boundary conditions are first given by
op(0) = p1(0) ~p(0) = kx( 2 the continuity of the velocity fields

(A14) vAd) =v,,(d)

The viscous stress tensor along thdirection, at the mem-
brane, is given by vy(d) = vy 5(d) (A17)

Using (A5) and (A17), we find

, du,
=2p—* +
0,=27 97 Uo *0 zzl (0)=2(k,C + kD). Ckxe2kxd(|x +k,) - e(kx+kz)dkz
+

A=A+ ,
(A15) 2 k, = Ky k, -k,
The final expression for the force acting in th2 direction (k+)d K
_ ke _2kele Ak, + k)
on the membrane is B,=- A= -C— -D X X (A18
2 kz kz_ kx kz_ kx ( )
Fi=F(0) - F1(0) = = Zp(0) = 0,0 ] + 4 p,(0) - 7;,,(0)]

The pressure difference at the permeable wall is given by
= +Zp.(0) - p(0)]. (A16) (A1)

e (A - CEM) (k, — ko) (K, + k)
K

p(d) =

@,

ks K, + Ko (A, — Ky ek 2ed(kz I(X)Dl( C(k, + k, C + Dedkr k) k, + K
g = AR k( PATID) 1 soi = ple) - pote) = - 265 S k) et
(A19)

We next use Darcy’s law for the permeation of theomponent and the no-slip boundary condition fortreomponent at
the wall, Egs.(4) and(5). The complete set of equations we have to solve is fummpared tqA12) for the impermeable
casé

k
1-—= 1 1
Eq.(A11) k, A Um
d dk _
A [ A Sk(ky + k) o k) | C =] O . (A20)
Eq.(5) k, Ky Ky D 0
k(e 9k — g7dky) ke k,edk

Again usingMATHEMATICA [27], we solve forA,C,D, to substitute in the expression for the fo@el4) and (A16).
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