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We calculate the hydrodynamic interactionLskd (Oseen interaction kernel) and relaxation frequencyvskd
for the fluctuations of a membrane that is harmonically bounded to a permeable or impermeable wall. We show
that due to the confining wall there is an increase in the effective viscosity of the fluid surrounding the
membrane. This has been observed in experiments on confined membranes, such as lamellar phases and the
red-blood cell membrane. Our results allow a quantitative analysis of these experiments, in terms of the
strength of the membrane confining potential and dislocations.
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I. INTRODUCTION

The dynamic response of confined liquid membranes is
important for the understanding of shear flow[1,2] and mi-
crorheology[3] experiments on lamellar phases and in the
context of biological membranes[4,5]. In the former case,
lamellar phases exhibit a rich phase diagram that depends on
the spatial conformation of defects in response to shear. A
quantitative relation between the unusually large measured
effective viscosities and the detailed structure of the mem-
branes in the lamellar phase[1,2], has not been achieved so
far. Biological membranes in cells are spatially confined by
the cytoskeleton[4], and therefore also exhibit dynamics
which is different from that of a free bilayer.

In this paper we first calculate the dynamics of a fluctu-
ating, but overall stationary, confined fluid membrane(a
similar calculation has been carried out before[6,7]). The
result presented here, aside from the derivation of the dy-
namics, is the definition of an effective viscosityhef f of the
membrane-fluid system. This effective viscosity can be
larger than that of a free fluid, due to the confinement of the
fluid and the deviation of the membranes from flatness, i.e.,
their normal undulations. The maximal value ofhef f is given
by the ratio ofd/j, whered is the normal confinement of the
membrane, andj is the mean distance in the plane of the
membrane, between membrane-wall collisions(or
membrane-membrane collisions in the case of lamellar stack)
due to thermal wandering. The expressions we derive for the
hydrodynamic(Oseen) interaction of the membrane, through
the surrounding fluid, show hydrodynamic screening at long
wavelengths, due to the wall. We define an effective viscos-
ity for the flow of the surrounding fluid due to the membrane
undulations. The largest amplitude undulations, at the persis-
tence length of the membrane, require transport of the sur-
rounding fluid and cause the measured viscosity of the sys-
tem to differ from that of the free fluid. We argue that the
maximal value of our effective viscosity, which occurs at this
wavelength, gives the measured effective viscosity of
sheared confined membranes. This definition of effective vis-
cosity is the main result of this paper.

We then use this definition to analyze the results of relax-
ation experiments of red-blood cells(RBC) [5]. We further
apply our definition ofhef f, which we calculate for an overall
stationary but thermally fluctuating membrane, to the case of
sheared lamellar stacks. In these experiments[1–3] we at-
tribute the anomalous increase in the measured viscosity to
the advection of confined fluid over and between colliding
membranes which now flow relative to each other rather than
fluctuate thermally. The membranes in the stack are assumed
to have the static undulating form allowed by the lamellar
confinement and the preexisting defects, while their dynam-
ics relative to each other is driven by the shear flow. When
the stack is sheared, these undulations move with respect to
each other and collide(Fig. 1), resulting in fluid and mem-
brane flows in the normalszd direction. These normal fluid
flows around, and due to, the membrane undulations are re-
sponsible for the anomalously large measured viscosity. Our
calculations therefore allow a quantitative analysis of the ex-
periments on lamellarLa phases under shear[1,2], other mi-
crorheology measurements[3], and analysis of the fluctua-
tions of membranes of the red-blood cell(RBC) [5]. In the
former case, we can relate the observed “shear thickening”
and “shear thinning”(increase and reduction in the viscosity
with increasing shear rate, respectively) to the changes in the
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FIG. 1. An illustration of the confined fluid dynamics around an
(a) overall-stationary but thermally fluctuating membrane near a
wall, compared to(b) a sheared stack of membranes with undula-
tions that collide. The shear rateġ=v0/d gives the relative velocity
v0 between the membranes.
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number of defects per membrane. In the latter example, the
RBC has a layer of water that is effectively trapped between
its outer membrane and the cytoskeleton[4], giving rise to
the large effective measured viscosity.

II. MODEL

We describe here the model and the results, deferring the
detailed calculations to the Appendix.

We solve the Navier-Stokes equations for the normal fluc-
tuations of a membrane that is confined by an impermeable
or a permeable wall[6,8] (Fig. 2). The actual bilayer-wall
interactions that keep the membrane at the constant average
separation,d, from the wall, are not explicitly described, and
are taken into account through a uniform binding harmonic
potential. The membrane is assumed to be flat on average,
with small fluctuations of amplitudeh, at an equilibrium dis-
tanced from the flat wall(Fig. 2). The rest of the space is
filled with an incompressible viscous fluid, of densityr and
viscosity h. The hydrodynamic variables in the region of
fluid trapped between the membrane and the wall have no
subscript(Fig. 2), while the hydrodynamic variables in the
semi-infinite regions above the membrane and below the
wall have subscripts 1 and 2, respectively.

The Stokes equations of motion for a viscous fluid are[9]
(see Fig. 2)
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We are interested in small amplitude normal(z-direction)
fluctuations,h, of the membrane from its flat positionh=0
(Fig. 2). The fluctuations in the flow field can therefore be
written in terms of the wave vectorkx. Finally, the boundary
conditions have to be specified. The normal velocity of the

fluid on both sides of the membrane is the same, and is equal
to the normal velocity of the membranevm=]h/]t. Addition-
ally, we require that the shear stress is the same on both sides
of the membrane[10]: sxz8 s0d=sxz,18 s0d, where the shear
stress is defined by[9]

sxz8 ; hS ] vx

] z
+

] vz

] x
D . s3d

The boundary conditions for the fluid at the wall are the
following: for the impermeable case they are no slip, so that
vxsdd=vzsdd=0. For the case of a permeable wall we use
Darcy’s law for the permeation of thez component of the
fluid velocity, and no-slip boundary condition for the
x-component at the wall

vzsdd = vz,2sdd = l dpsdd, s4d

vxsdd = vx,2sdd = 0, s5d

wheredpsdd is the pressure difference across the permeable
wall, l=Lp/h, andl is the permeability of the wall[8]. The
lengthLp gives the radius of imaginary holes in the perme-
able wall, such that the fluid velocity inside the holes
changes from zero at the inner surface of the hole tovzsdd at
their centers.

Solving the resulting equations[Eqs.(1) and (2)] for the
three variablesvx, vz, andp (see the Appendix), we calculate
the pressure difference and viscous stress tensor along thez
direction, in each region and at the membrane. This gives us
an expression for the force acting in theẑ direction on the
membrane due to the surrounding fluid flow. The Oseen in-
teraction kernel,Lsur −r8 u d, is defined by the relation be-
tween the velocity of the membrane and the force which we
just calculated due to the fluid motion[Eq. (A16)]

vm =
] hsr ,td

] t
= −E d2r8Lsur − r8udFzsr8,td. s6d

After a Fourier transform and an expansion inkz to first
order in the small inertial termvr /h (A3), we find for an
impermeable wall

Lskxd = −
1

4hkx
fe−2dkxs1 − e2dkx + 2dkx + 2sdkxd2dg, s7d

compared withL freeskxd=1/4hkx, which is the Oseen inter-
action for a free membrane[11–13]. In Fig. 3 we plot the
function L /L free, which indeed shows the free-membrane
behavior in the limit kx→` or d→`, and completely
screened interactions in the limitkx→0, where we get:
L /L free→d3kx

3/3.
To derive the relaxation frequency of the membrane fluc-

tuations, we note that in equilibrium, the force due to the
surrounding fluid is balanced[15] by the force due to the
intrinsic bending energy of the membrane[13,16]

hkx
vskxd = Lskxd

] Hbend

] hkx

, s8d

whereHbendis the bending energy of the membrane, which is
written in terms of the small normal displacementh

FIG. 2. An illustration of the domain of the solution of the
Navier-Stokes equations(1)–(5), [(A1)–(A20)] for the motion of a
membrane bounded to a permeable or impermeable wall.
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H =
1

2
E d2rfks¹2hsrdd2 + ghsrd2g, s9d

where k is the intrinsic curvature modulus andg is the
strength of a uniform harmonic potential. We neglect here
any surface tension terms, since we deal with an infinite fluid
membrane. We also neglect terms proportional to Gaussian
curvature, which is similar to spontaneous curvature terms
that are here neglected[6,16]. Furthermore, the Gaussian
curvature is a topological constant, so that small fluctuations
that do not change the membrane topology(i.e., no holes),
do not excite this term.

The presence of the harmonic potentialg imposes a finite
average amplitude of the membrane thermal fluctuations,dT,
at the value of the separation from the walld [16]

dT
2 = d2 = khs0dhs0dl =

kBT

8Îkg
. s10d

The choice of harmonic potential for description of the con-
finement is natural when the physical situation provides a
“soft” substrate: For the RBC case the harmonic potential is
natural since the cytoskeleton is made up of soft filaments
(spectrin) that are linked to form a soft shell on which the
bilayer sits[4]. Similarly for lamellar phases(see the next
section), the spacingd is determined by thermal and struc-
tural fluctuations of neighboring membranes. This also pro-
duces a soft restoring force. For the hard wall case this har-
monic approximation is good for small amplitude
fluctuations, where large area membrane-wall contacts are
unlikely. In any realistic scenario the membrane is held at a
constant spacingd from the wall by some(unspecified) con-
tacts, which we here do not describe. These contacts, even
when of small area and sparse(such as in the RBC[4,14]),
will likely induce a real harmonic-like potential. Hard-wall-
membrane collisions are therefore rare, and will be ne-
glected.

The relaxation frequencyv is therefore finally given by

vskxd = fkkx
4 + ggLskxd. s11d

In the limit of short length scalesskx→`d, we recover the
free-membrane behaviorv→kkx

3/4h. In the limit of long
length scales the dynamics are now modified,v
→gd3kx

2/3h, so the response is “stiffer” than that of a free
membrane, with the rigid wall providing an effectively stron-
ger restoring force due to the transport of the confined water
over length scales 1/kx. At intermediate wavelengthsq0!q
!1/d [where q0=sg /kd1/4=1/j and j is the persistence
length of the membrane], we recover the result of Brochard

FIG. 4. The functionhef fsqd /h as a function of the wave vector
q, using the elastic and confinement parameters of the RBC[4] (see
Sec. IV). Solid line: impermeable wall[Eq. (14)]; dash: Lp

=0.1 nm; dot:Lp=1 nm; dash-dot:Lp=10 nm. Vertical dashed line
indicates the persistence length of the confined membraneq0.

FIG. 3. The functionLskxd /L freeskxd. Solid
line: impermeable wall[Eq. (7)]; dash: Lp=d;
dash-dot:Lp=10d; dot: Lp=100d [Eq. (12)].
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et al. [15]: v→kkx
6d3/3h. This last regime is in fact the most

relevant for most measurements, as we find below. The im-
portance of the persistent lengthj is in the fact that the
height-height correlation function saturates at this length
scale[16], so that the curvature modes of longer lengths do

not contribute. In other words, it gives the scale of the largest
thermal modes that are correlated. Longer wavelengths con-
form to the confining potential and are not thermally corre-
lated (screening effect).

For a permeable wall we get

Lpermskxd =
1

4kxh

e−2dkxs1 − e2dkxs1 + 4Lpkxd + 2dkx + 2sdkxd2s1 + 2Lpkxdd
1 + 4Lpkx

. s12d

In the limit of impermeable wallLp→0 we recover the pre-
vious result(7).

In Fig. 3 we plot the functionLpermskxd /L freeskxd, which
shows free-membrane behavior in the limitkx→`, and
screened interactions in the limitkx→0, where we now have
Lpermskxd /L freeskxd→4Lpkx.

III. EFFECTIVE VISCOSITY

In the previous section, we calculated the effects of con-
finement on the membrane dynamics. We saw that confine-
ment of the fluid flow around the membrane results in sig-
nificant modification of the relaxation frequency(11). We
begin with deriving a working definition of the effective vis-
cosity of the confined membrane, and then apply this to vari-
ous physical realizations of confined membranes in the next
section.

First, we calculate the rate of dissipation of energy due to
membrane fluctuations of wave vectork

Ė =K f
] hk

] t
L = k− hkfkk4 + ggvkhkl = vkkBT, s13d

where for convenience we use the notationkx=k, the force
f =]Hbend/]hk as in(8), andkhk

2l=kBT/ fkk4+gg [16]. We use
the equal time correlationshkstdhkstd, so we can use the equi-
librium value ofkhk

2l. We see that the rate of energy dissipa-
tion is inversely proportional to the bare fluid viscosity, since
vk~1/h [see Eqs.(7) and (11)]. The result of Eq.(13), vk
~1/h, is a general one for thermal flows[17]. For the spe-
cific case of fluctuating membrane, we have a fixed ampli-
tude of thermal fluctuations,d by Eq.(10), as is the energy
dissipated per membrane fluctuationskBTd, while the rate of
fluctuations is slowed down by the viscosity, thereby reduc-

ing ġ, and with it Ė.
It is convenient to express the modified dynamics of a

confined membrane, through the following definition of an
effective viscosityhef f. We define this effective viscosity by
comparing the rate of energy dissipation Eq.(13) in confined
and unconfined membranes, i.e., the ratio of the frequencies

hef fskd/h =
v free

v
= −

kk4e2dk

s1 − e2dk + 2dk+ 2sdkd2dsg + kk4d
,

s14d

where v free=skk4d /4khef fskd. In other words, the effective
viscosityhef fskd transforms the rate of energy dissipation of
a free membrane to that of a confined membrane. A similar
expression follows for the case of a permeable wall, using
the result of Eq.(12) instead of(7) in Eqs.(11) and(14). The
results are shown in Fig. 4.

In the limit of long length scalessk→0d, this expression
Eq. (14) is linear in the wave vector: hef fskd /h
→3kk/ s4gd3d (Fig. 4). Specifically, in this limit, the con-
fined effective viscosity is much smaller than that of a free
membrane, due to the faster oscillation frequencyv
.gd3k2/3h@kk3/4h. The confinement forces the mem-
brane to adopt a nearly flat, lamellar nature at long wave-
lengths, where no normal(z-direction) motion persists. This
is the “lubrication” approximation regime for the flow of
thin, flat films [16]. In the opposite limit of short length
scales, we recover the free viscosity of the surrounding fluid
andhef fskd /h→1 (Fig. 4). Our definition provides a natural
measure of the departure of the membrane from a flat state,
as one can see by noting that in the limitk→0 the membrane
is flat due to the confinement, while in the limitk→`, the
membrane is flat due to its own bending stiffness. Indeed, in
these limitshef fskd /h is either unity or small. It is only in the
intermediate regime, as we’ll see later, thathef fskd /h can
attain large values, signaling a strong deviation from flatness.

Note that the above definition ofhef fskd /h [Eq. (14)] is
independent of the temperature, which is the driving force
for the thermal fluctuations. The reason for this is that both
confined and free membranes are driven by the same thermal
power. The fluid flow and amount of energy dissipated, at
each wave vectork, is determined by the amplitude of the
fluctuations, which is clearly different for the free and con-
fined case[16]. As seen in Fig. 4, as the permeation increases
(increasingLp) the effective viscosity approaches that of un-
confined membrane, that ishef fskd /h→1. Only at long
wavelengths, where thez component of the motion is sup-
pressed, does the confinement still affect the membrane dy-
namics.
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The confined membrane has maximal thermal fluctuations
at the persistence lengthj=1/q0. At these intermediate
wavelengthsq0!q!1/d, where v→kk6d3/3h, we get
hef fskd /h→3/4sdkd3, which in general can be larger than
unity. This means that at these wavelengths the response of
the confined membrane is significantly slower than that of
the free membrane; this implies a larger effective viscosity of
the surrounding medium. Indeed, at the characteristic wave
vector q0, the viscosity ratio of Eq.(14) has its peak value
(Fig. 4)

hef f/h . −
e2dq0

s− 2 + 2e2dq0 − 4dq0 − 4sdq0d2d
. s15d

We are going to use this maximal viscosityhef f/h (15) as the
measured effective viscosity of sheared confined membranes
when we analyze experimental data in the next section. The
motivation for this definition is as follows: At the wave vec-
tor, q0, we compare our definition ofhef fskd /h [Eq. (14)]
arising from Eq.(13), and the expressions for the dissipation
rate in a sheared fluid[9]

Ė =
h

2
E dVS ] v

] z
D2

=
hL2v0

2

2d
, s16d

whereL is the lateral size of the slab of sheared flow, and the
shear rate across the intermembrane spacing of widthd is
given by ġ=v0/d. The local average velocity due to thermal
fluctuation is estimated byv0.dvk, and the lateral size of
the slab of flow at this wave vector isL,j, which we sub-
stitute in Eq.(16)

Ė =
hef fj

2vk
2d2

2d
=

hef f

16Î2
j2

ÎkBT

skgd1/4

kk3

4hef f
vk

. vkkBTskjd3
Îk/kBT

16Î2
, vkkBT, s17d

where we usedd2=kBT/8Îkg [Eq. (10)] and skjd3=1 for k
=q0, andÎk /kBT/16Î2,1/8. Beginning with the standard
definition of shear flow, Eq.(16), we roughly recover the
result of Eq.(13) for the thermally fluctuating membrane.
The main point is that the equilibrium amplitude of thermal
fluctuationsd2 is proportional tokbT and determines the en-
ergy dissipated per modek. The effective viscosity, defined
in Eq. (14), is thus consistent(up to an order of magnitude)
with the usual “shear flow” definition of Eq.(16), for the
maximal value of the viscosity at wavelengths of the order of
the persistence length. We therefore identify the measured
effective viscosities, with the maximal calculated effective
viscosity of a membrane fluctuation at the wave vectorq0 [as
in Eq. (15)], where the deviation from flatness(amplitude of
fluctuations) is largest.

In the limit of weak harmonic confinement,dq0!1, the
maximal effective viscosity of Eq.(15) diverges ashef f/h
→3/8sdq0d3. We can rewrite this expression in terms of the
amplitude of thermal fluctuations of the membrane,dT,
which is given by the harmonic confinementg [Eq. (10)]
[16], so that in general we find

hef f/h = 3Î8S k

kBT
D3/2SdT

d
D3

, s18d

which is ,15–500sdT/dd3 for typical lipid bilayers(where
k,1–10kBT). If the membranes are indeed confined to have
undulations whose amplitude does not exceed the distanced,
as for the rigid wall we presented above, then we havedT
=d. In general, the confinement of the membrane fluctuation
amplitude can be constrained by a stronger harmonic poten-
tial g, so that the membrane shows fluctuations whose am-
plitudes are less thand sdT,dd. This results in a lower ef-
fective viscosity, as seen in Eq.(18). Alternatively, a weaker
confinement, withdT.d, can also occur, as we discuss be-
low.

Our definition of the effective viscosity of membrane
fluctuations is related to the measured viscosity in sheared
lamellar phases as follows: If the membranes were perfectly
flat, the measured viscosity of the sheared stack would be
that of the free fluidhef f/h=1. However, the membranes in
thermal equilibrium are not flat; they have an undulating
form constrained by the lamellar confinement and preexist-
ing defects. When the stack is sheared, these undulations
move with respect to each other and collide(Fig. 1), result-
ing in fluid and membrane flows in the normalszd direction.
These normal fluid flows around, and due to, the membrane
undulations are responsible for the anomalously large mea-
sured viscosity[1–3] (Fig. 1) in lamellar stacks of mem-
brane, typically of the orderhef f/h,103–102. The addi-
tional energy dissipation due to the collision-induced
membrane oscillations normal to the flow, in the confinement
of the neighboring membranes, therefore increases the ob-
served viscosity. When the sheared membranes collide and
are pushed sideways(see also Fig. 1), the resulting local flow
field is similar to the confined normal fluctuations we calcu-
lated in the previous section. Our calculation predicts the rate
of dissipation that such an undulation produces in Eq.(13),
albeit for an overall stationary(i.e., not flowing) and un-
sheared membrane.

IV. PHYSICAL REALIZATIONS OF CONFINED
MEMBRANES

An important biological example where the confinement
of the liquid membrane affects its dynamics is in the red-
blood cell (RBC) [4]. In this composite lamellar structure,
there is a two-dimensional cytoskeleton network that is at-
tached to and therefore confines the thermal fluctuations of
the outer lipid membrane. We have previously shown[4] that
the cytoskeleton network acts like a rigid shell at a constant
average separation,d, from the liquid membrane. At the fre-
quencies of the thermal fluctuations, this shell turns out to be
impermeable[4,18]. In addition to the confinement of the
thermal fluctuation spectrum, the rigid shell also increases
the effective viscosity of the water layer that is trapped be-
tween the cytoskeleton and the bilayer, by constraining its
flow.

For this case of the RBC we have the following typical
values:d,30 nm andg,53107 J/m4 [4], which, accord-
ing to Eq.(14), gives a maximum effective viscosity(18) of
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hef f/h,70 (Fig. 4). This value is in close agreement with
the value<50–100 deduced from the measured relaxation
times of a deformed RBC[5]. In these experiments, the cy-
toplasm flows along the cytoskeleton mesh, as the deformed
RBC relaxes back to its undeformed structure. Thus, an al-
most impermeable cytoskeletal shell, separated at a fixed dis-
tance from the bilayer[4], results in the significantly larger
effective viscosity required to fit these dynamical experi-
ments. Another biological example of a flowing membrane
confined by a cytoskeleton is the extraction of tether from
neuronal growth cones[19]. In this system the water behaves
as if it is trapped in a thin layers,1 nmd between the mem-
brane and the underlying actin mesh, resulting in an extraor-
dinarily large value of the effective viscosity.

For an infinite stack of membranes in anLa lamellar
phase(Fig. 5), the confinement of each bilayer is not by a
rigid wall, but due to the steric repulsion of the neighboring
membranes(except for the outer ones that are confined by
the rigid walls of the channel) [1]. The bulk modulus of this
phase is given by Ref.[16]: B=36skBTd2/p2kd4, which cor-
responds to the parameterg in Eq. (18). The resulting maxi-
mal effective viscosity(takingk,10kBT) is hef f/h,3. This
number is typical of the measured viscosity of a defect-free
lamellar phase[1–3,21]. By “defect-free” we mean a lamel-
lar phase where dislocations and multilayered vesicles are
absent.

We suggest that the effective viscosity of lamellar phases
with defects can be treated as follows: Defects in the lamellar
stacking are typically dislocation lines that allow membranes
to “penetrate” through their neighbors[1,12,20] (Fig. 5). The
layer of confined water around each membrane is still,d
thick, while the effective static confinement parameterg is
now smaller, allowing for the membrane to have undulations
with an average amplitudedsTd.d. This is typical of a

lamellar phase at low shear rates[1–3] [Fig. 5(b)]. The mea-
sured effective viscosity in these systems is typically of the
order hef f/h,103. Values of this order of magnitude are
predicted by our theory, if the membranes are allowed to
have thermal fluctuations with an amplitude ofdT/d,2–3
(depending on the ratiok /kBT) in Eq. (18), due to the strong
nonlinear dependence ofhef f/h on the ratiodT/d. We there-
fore treat the dynamics of a lamellar phase with defects as a
lamellar phase with an effectively smaller static confinement
g, that results in a value ofdsTd /d.1. By making this
choice we assume that the fluid flow over the membrane
undulations is still confined within a layer of thicknessd (the
average intermembrane separation) with respect to the mem-
brane, so that our calculation is still valid(Fig. 5). The large
effective viscosity is therefore attributed to the slow fluid
flow through this thin layer, while it is periodically blocked
by the large membrane undulations, which now exceedd.
This is a very rough description of the rather complicated
dynamics of the entangled membranes, though it is useful in
allowing us to make predictions concerning the density of
defects and the shear-rate dependence of the effective viscos-
ity. Since the fluid is mostly confined to a layer of thickness
d around the membrane, except at the defect sites them-
selves, this may be a reasonable starting point to describe
this complicated system. Our treatment supposes that the vis-
cosity is dominated by the solvent-bilayer flow, and not by
movement(“creep”) of the defects inside the membranes
[20]. The transition from lamellar to multilayered vesicles
sMLV d [1] is not described by our model, which allows for
an analysis of the measured viscosity at each geometry sepa-
rately.

If the membranes meander through the defects in the
stack in a random walk(Fig. 5), then the ratiodT/d is given
by ÎL / l, whereL is the average size of a membrane segment,
andl is the average distance between defects along the mem-
brane segment, so thatnd= l /L is the dimensionless density
of defects. In experiments[2,3], it seems that at low shear
rates the lamellar phase[Fig. 5(b)] has membrane segments
of average lengthL,10d. The measured effective viscosity
of hef f/h,103 therefore suggests that at low shear rates the
density of defects is maximal, withl ,d, so that dT/d
.ÎL / l ,3. As the shear rate increases, the membranes in the
stack become more ordered and the dislocations are re-
moved, until a defect-free lamellar phase[1–3] forms at high
shear rates[Fig. 5(b)]. As the density of defects decreases, so
does the effective viscosity:hef f/h~nd

−3/2 [using Eq.(18)].
We can further compare our analysis above with the re-

sults of experiments on the time-dependent behavior of a
lyotropic lamellar phase under shear flow[22,23]. In these
experiments[23] it was found that the phase of onions can
oscillate between a disordered and ordered(triangular) pack-
ing state, with a corresponding change in the shear rate(for a
constant stress). These periodic rearrangements of the onions
are limited by the rate at which the trapped water confined
between the onions can flow out(Fig. 6). We treat the onions
as rigid bodies which only change their packing from or-
dered to disordered, which is reasonable since the onions are
quite small and compact, as described in Refs.[22,23]. From
simple geometry, the shape of the trapped water between the
onions has an average width ofd,0.155R. Using our results

FIG. 5. (a) A schematic example of a lamellar phase of mem-
branes with average separationd, showing defects that produce fi-
nite membrane segmentsL, with edge dislocations every distancel.
(b) A schematic phase diagram of lamellar membranes as a function
of shear rate, as observed in experiments[1,2].
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so far, we write the frequency of these oscillations asv
=kq3/4hef f, where q,1/R,0.5 mm−1, k,kBT, and
hef f/h,sR/dd3.250. We therefore recover the measured
[23] frequency of,1000 s. In this analysis we treat fluid
flows on the length scale of the radiusR or smaller, as es-
sentially those we calculated for flat confined membranes.
This is a reasonable approximation for the dynamics of the
whole onions.

Furthermore, since we predict that the effective viscosity
will not depend on the size of the onions, the frequency
should depend on the radius throughv~R−3. This relation
naturally explains the measured dependence of the frequency
on the temperature(Fig. 6 of Ref.[23]), as it follows from
the observed temperature dependence of the radius(in the
relevant range of shear rates; see Fig. 5 of Ref.[22]); the
radius is found to increase by a factor of,1.5 when the
temperature increases from 23.5°C to 27.8°C. This corre-
sponds to a decrease of the frequency by a factor of 1.53–3.3
over this range of temperatures, in good agreement with the
observed data[23]. Similar slow dynamics appears in a
sheared sponge phase[24], where periodic transitions be-
tween large and small multilamellar droplets occur.

Recent experiments on adsorbed lipid membranes[25]
show the dynamic implications of confinement on membrane
fluctuations. In these experiments the membranes are layered
and form adhesion patches, with trapped “blisters” of water
in between. The adhesion of the membranes confines the
thermal fluctuations to patches of lateral sizeL,0.44mm,
with a root-mean-square fluctuation amplitude ofd
,6.5 nm. When the relaxation rate of these fluctuations was
measured, it was found to be two orders of magnitude slower
than expected for a free membrane. If we use the amplitude
d as the typical thickness of the water layer in which the
membrane is free to fluctuate in our expression for the im-
permeable wall[Eq. (11)], we find a time scale of,1 s for
the dynamics at the measured wave vectorq.2.3 mm−1.
This is in excellent agreement with the measured value of
,0.9 s.

Another example of recent experiments where enhanced
effective viscosity has been observed is the rheological study
of giant vesicles by a micropipette[26]. In these experiments
the shear-induced reduction in the amplitude of thermal fluc-
tuations was measured by the suction of the vesicle into a
micropipette. The critical time scale of the vesicle fluctua-
tions that are affected(diminished) by the shear was found to
be t0,140 s, which is,180 times larger than the slowest
vesicle membrane mode:tvesicle=hR0

3/k, whereR0.20 mm

is the vesicle radius andk.22kBT [26]. These slowest
modes have the longest wavelengthsR0d and largest ampli-
tude, so that they present the largest obstacle when the
vesicle is being drawn into the micropipette(of radius r
,5 mm; Fig. 7). From our discussion so far, the effective
viscosity these fluctuations encounter inside the micropipette
is enhanced by a factor of(15): ,sR0/ rd3,100 (taking q0

,1/R0). Note that the confinement inside a cylindrical mi-
cropipette is higher than in the slab geometry we calculated
above. This setup can be used to systematically check our
predicted relation between the effective viscosityhef f/h [Eq.
(15)], and the ratio,sR0/ rd.

V. CONCLUSIONS

In this paper we have calculated the hydrodynamics of
fluctuations in confined fluid membranes. We find that the
effects of confinement dramatically modify the dynamics of
the membranes. We introduce a new definition for the effec-
tive viscosity of a confined membrane, which we relate to the
observed effective viscosities in various physical realizations
of confined membranes such as lamellar phases and in red-
blood cell. These results can also help in the analysis of
dynamical phase transitions occurring in lamellar mem-
branes under shear flow. In particular, they allow one to
make a quantitative connection between the geometric con-
formation of the membranes, their defects, and the measured
effective viscosity.
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APPENDIX: SOLUTION OF STOKES EQUATIONS

The equations of motion for the fluid are(1) and (2). We
next make a standard Fourier transform, by taking thex de-
pendence to be given by exps−ikxxd. The incompressibility
condition[Eq. (2)] is therefore:vx=s−i /kxd]vz/]z. From this
set of equations the pressure is given by

FIG. 6. Time-dependent dynamics of onion phase[23]. The os-
cillations are between the ordered-triangular(left) and disordered
(right) packing of the onions. These are limited by the flow of the
water into and out of the confined spaces between the onions, when
these roll over each other.

FIG. 7. Dynamics of a vesicle(solid line) drawn into a micropi-
pette (thick rectangle) in the experiments of Ref.[26]. The free
fluctuations of wavelength,R0 have the largest amplitude(dashed
line), and are confined into the micropipette of radiusr, limiting the
dynamics.
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p = −
1

kx
2Fkz

2] vz

] z
−

]3vz

] z3 G . sA1d

Substituting for thez- andt dependence an exponential form
exps±kzz−vtd, we have an equation forkz

kz
2

kx
2f− rv + hskx

2 − kz
2dg = − rv + hskx

2 − kz
2d, sA2d

which has the solutions

kz
2 = H kx

2

kx
2 − rv/h.

sA3d

From now on we shall usekz to mean the second solution.
The fluid velocity fields are therefore given by

vz = e−vt−ikxxsAe−kxz + Be−kzz + Cekxz + Dekzzd,

vz,1 = e−vt−ikxxsA1e
kxz + B1e

kzzd,

vz,2 = e−vt−ikxxsA2e
−kxz + B2e

−kzzd, sA4d

with the correspondingx components given by the incom-
pressibility condition

vx =
− i

kx
e−vt−ikxxs− kxAe−kxz − kzBe−kzz + kxCekxz + kzDekzzd,

vx,1 =
− i

kx
e−vt−ikxxskxA1e

kxz + kzB1e
kzzd,

vx,2 =
− i

kx
e−vt−ikxxs− kxA2e

−kxz − kzB2e
−kzzd. sA5d

1. Impermeable wall

For simplicity let us first consider the impermeable wall
case, i.e., the region 2 is removed(Fig. 2). The boundary
conditions at the membrane are

vzs0d = vz,1s0d,

vxs0d = vx,1s0d,

sxz8 s0d = sxz,18 s0d, sA6d

where the shear stress is defined in Eq.(3).
First, using the first two boundary conditions of(A6), we

get

A1 =

− AS1 +
kz

kx
D − 2B

kz

kx

1 −
kz

kx

+ C,

B1 =

2A + BS1 +
kz

kx
D

1 −
kz

kx

+ D. sA7d

Inserting these into the last boundary condition of(A6), we
get

B = − A
kx

kz
⇒ A1 = A + C, B1 = B + D. sA8d

The equations we need to solve are for the three indepen-
dent parametersA,C,D, using the following boundary con-
ditions at the wall(at z=d)

vzsdd = 0, sA9d

vxsdd = 0. sA10d

Combining these two equations with the condition

vzs0d = vz,1s0d = vm, sA11d

wherevm=]h/]t is the membrane velocity in thez direction,
we have a complete set of equations to solve

Eq.sA11d
Eq.sA9d
Eq.sA10d

⇒1 1 −
kx

kz
1 1

e−dkx −
kx

kz
e−dkz edkx edkz

kxse−dkz − e−dkxd kxe
dkx kze

dkz

21A

C

D
2

= 1vm

0

0
2 . sA12d

Using MATHEMATICA [27] we solve forA,C,D

1A

C

D
2 =1 1 −

kx

kz
1 1

e−dkx −
kx

kz
e−dkz edkx edkz

kxse−dkz − e−dkxd kxe
dkx kze

dkz

2
−1

1vm

0

0
2 .

sA13d

Substituting the parametersA,C,D in the expression for the
pressure(A1), we find at the membranesz=0d for the two
regions

ps0d = kxsA − CdSkz
2

kx
2 − 1D
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p1s0d = − kxsA + CdSkz
2

kx
2 − 1D

⇒ dps0d = p1s0d − ps0d = − 2AkxSkz
2

kx
2 − 1D .

sA14d

The viscous stress tensor along thez direction, at the mem-
brane, is given by

szz8 ; 2h
] vz

] z
⇒ szz8 s0d = szz,18 s0d = 2skxC + kzDd.

sA15d

The final expression for the force acting in the +ẑ direction
on the membrane is

Ft = Fs0d − F1s0d = − ẑfps0d − szz8 s0dg + ẑfp1s0d − szz,18 s0dg

= + ẑfp1s0d − ps0dg. sA16d

2. Permeable wall

We now consider the case of a permeable wall. The
boundary conditions at the membrane remain unchanged,
while at the wall the boundary conditions are first given by
the continuity of the velocity fields

vzsdd = vz,2sdd

vxsdd = vx,2sdd sA17d

Using (A5) and (A17), we find

A2 = A + C
kxe

2kxdslx + kzd
kz − kx

+ 2D
eskx+kzddkz

kz − kx
,

B2 = − A
kx

kz
− C

2kxe
skx+kzdd

kz − kx
− D

e2kzdskx + kxd
kz − kx

. sA18d

The pressure difference at the permeable wall is given by
(A1)

psdd =
e−dkxsA − Ce2dkxdskz − kxdskz + kxd

kx

p2sdd =
e−dkxskz + kxdsAskz − kxd + e2dkxs2edskz−kxdDkz + Cskz + kxddd

kx
⇒ dpsdd = psdd − p2sdd = − 2edkx

sC + Dedskz−kxddkzskx + kzd
kx

.

sA19d

We next use Darcy’s law for the permeation of thez component and the no-slip boundary condition for thex component at
the wall, Eqs.(4) and (5). The complete set of equations we have to solve is now[compared to(A12) for the impermeable
case]

Eq.sA11d
Eq. s4d
Eq. s5d

⇒1 1 −
kx

kz
1 1

e−dkx −
kx

kz
e−dkz edkx + Lp

2edkxkzskx + kzd
kx

edkz + Lp
2edkzkzskx + kzd

kx

kxse−dkz − e−dkxd kxe
dkx kze

dkz

21A

C

D
2 = 1vm

0

0
2 . sA20d

Again usingMATHEMATICA [27], we solve forA,C,D, to substitute in the expression for the force(A14) and (A16).
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